organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-(Anilinomethyl)phenol

Yuan Qu, Lai-Jin Tian* and Jie Dong

Department of Chemistry, Qufu Normal University, Qufu 273165, People's Republic of China

Correspondence e-mail: laijintian@163.com

Received 13 November 2007; accepted 13 November 2007

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.002 Å; R factor = 0.041; wR factor = 0.108; data-to-parameter ratio = 13.8.

In the title compound, $C_{13}H_{13}NO$, which was synthesized by the reduction of 2-(phenyliminomethyl)phenol, the dihedral angle between the two benzene ring planes is 71.08 (4)°. The crystal structure exhibits the formation of centrosymmetric dimers by intermolecular $O-H \cdots N$ hydrogen bonds, characterized by an $R_2^2(12)$ pattern. These dimers are further connected by $N-H \cdots O$ hydrogen bonds.

Related literature

For related literature, see: Aguiari *et al.* (1992); Arod *et al.* (2005); Baker *et al.* (1992); Jeevanandam *et al.*(2000); Noda (1959).

90.649 (5)°

91.985 (4)°

90.323 (5)°

2

523.1 (2) Å³

 $K\alpha$ radiation

Experimental

Crystal data

C ₁₃ H ₁₃ NO α	=
$M_r = 199.24$ β	=
Triclinic, $P\overline{1}$ γ	=
a = 5.5911 (16) Å V	<i>'</i> =
b = 7.932 (2) Å	=
c = 11.803 (3) Å	10

μ=	0.08	s mi	n^{-1}
<i>T</i> =	295	(2)	Κ

Data collection

Bruker SMART APEX detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2002) T_{min} = 0.965, T_{max} = 0.989

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.041 & \text{H atoms treated by a mixture of} \\ wR(F^2) &= 0.108 & \text{independent and constrained} \\ S &= 1.07 & \text{refinement} \\ 1943 \text{ reflections} & \Delta\rho_{\text{max}} &= 0.14 \text{ e } \text{\AA}^{-3} \\ 141 \text{ parameters} & \Delta\rho_{\text{min}} &= -0.19 \text{ e } \text{\AA}^{-3} \end{split}$$

Table 1

Hydrogen-bond geometry (Å, °).

	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots \mathbf{A}$
$D1 - H1 \cdots N1^{i}$ 0.82	1.98	2.7871 (16)	170
$N1 - H1A \cdots O1^{ii}$ 0.864 (16) 2.233 (1	3.0770 (17)	165.8 (13)

 $0.45 \times 0.08 \times 0.06 \; \text{mm}$

3981 measured reflections

 $R_{\rm int} = 0.017$

1943 independent reflections

1632 reflections with $I > 2\sigma(I)$

Symmetry codes: (i) -x + 2, -y + 1, -z + 2; (ii) x - 1, y, z.

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97*.

The authors thank the Natural Science Foundation of Shandong Province and Qufu Normal University for supporting this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2613).

References

- Aguiari, A., Bullita, E., Casellato, U., Guerriero, P., Tamburini, S. & Vigato, P. A. (1992). *Inorg. Chim. Acta*, **202**, 157–171.
- Arod, F., Gardon, M., Pattison, P. & Chapuis, G. (2005). Acta Cryst. C61, 0317– 0320.
- Baker, R. T., Calabrese, J. C. & Westcott, S. A. (1992). J. Organomet. Chem. 498, 109–117.
- Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Jeevanandam, A., Ling, Y.-C. & Panneerselvam, K. (2000). Anal. Sci. 16, 1363– 1364.
- Noda, M. (1959). J. Org. Chem. 24, 1209-1212.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

supplementary materials

Acta Cryst. (2007). E63, o4832 [doi:10.1107/S1600536807058692]

2-(Anilinomethyl)phenol

Y. Qu, L.-J. Tian and J. Dong

Comment

The structure of 2-(phenyliminomethyl)phenol is known (Arod *et al.*, 2005). We report herein the crystal structure of its reductive product which is a bidentate ligand (Baker *et al.*, 1992) (Fig. 1).

The bond lengths and angles are within normal ranges (Aguiari *et al.*, 1992; Jeevanandam *et al.*, 2000). The dihedral angle between the two phenyl ring planes is 71.08 (4)°. Centro-symmetric dimers are formed by intermolecular O—H···N hydrogen bonds characterized by an $R_2^2(12)$ pattern, which are further connected by N—H···O hydrogen bonds (Table 1).

Experimental

The title compound was synthesized by the reaction of 2-(phenyliminomethyl)phenol (1.97 g, 10 mmol) with NaBH₄ (0.38 g, 10 mmol) in 60 ml me thanol according to the reported method (Noda, 1959). Crystals were obtained from an ethanolic (95%) solution by slow evaporation at room temperature.

Refinement

H atoms bonded to O and C were placed at calculated positions and were included in the refinement in the riding-model approximation, with C—H = 0.93 Å and for aromatic H atoms, C—H = 0.97 Å for methylene H atoms, O—H = 0.82Å and $U_{iso}(H) = 1.2Ueq(C)$. The H atom on N atom was freely refined.

Figures

Fig. 1. The structure of (I), with displacement ellipsoids are drawn at the 30% probability level.

2-(Anilinomethyl)phenol

Crystal data $C_{13}H_{13}NO$ $M_r = 199.24$ Triclinic, *P*T Hall symbol: -P 1 a = 5.5911 (16) Å b = 7.932 (2) Å

Z = 2 $F_{000} = 212$ $D_x = 1.265 \text{ Mg m}^{-3}$ Mo K\alpha radiation $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1673 reflections $\theta = 2.6-27.2^{\circ}$

c = 11.803 (3) Å
$\alpha = 90.649 \ (5)^{\circ}$
$\beta = 91.985 \ (4)^{\circ}$
$\gamma = 90.323 \ (5)^{\circ}$
V = 523.1 (2) Å ³

Data collection

Radiation source: fine-focus sealed tube 1632 reflections with $I > 2\sigma(I)$	Bruker SMART APEX detector diffractometer	1943 independent reflections
	Radiation source: fine-focus sealed tube	1632 reflections with $I > 2\sigma(I)$
Monochromator: graphite $R_{\rm int} = 0.017$	Monochromator: graphite	$R_{\rm int} = 0.017$
$T = 295(2) \text{ K}$ $\theta_{\text{max}} = 25.5^{\circ}$	T = 295(2) K	$\theta_{\text{max}} = 25.5^{\circ}$
φ and ω scans $\theta_{min} = 1.7^{\circ}$	ϕ and ω scans	$\theta_{\min} = 1.7^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2002) $h = -6 \rightarrow 6$	Absorption correction: multi-scan (SADABS; Bruker, 2002)	$h = -6 \rightarrow 6$
$T_{\min} = 0.965, T_{\max} = 0.989$ $k = -9 \rightarrow 9$	$T_{\min} = 0.965, T_{\max} = 0.989$	$k = -9 \rightarrow 9$
3981 measured reflections $l = -14 \rightarrow 14$	3981 measured reflections	$l = -14 \rightarrow 14$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.041$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.108$	$w = 1/[\sigma^2(F_o^2) + (0.0537P)^2 + 0.0635P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.07	$(\Delta/\sigma)_{\rm max} < 0.001$
1943 reflections	$\Delta \rho_{max} = 0.14 \text{ e} \text{ Å}^{-3}$
141 parameters	$\Delta \rho_{\rm min} = -0.19 \ e \ {\rm \AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

 $\mu = 0.08 \text{ mm}^{-1}$ T = 295 (2) KPrism, colorless $0.45 \times 0.08 \times 0.06 \text{ mm}$

methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
H1A	0.524 (3)	0.7013 (18)	0.9462 (12)	0.043 (4)*
N1	0.6501 (2)	0.70555 (13)	0.90607 (9)	0.0385 (3)
01	1.20706 (16)	0.62179 (11)	1.04289 (7)	0.0440 (3)
H1	1.2523	0.5298	1.0659	0.066*
C1	0.8734 (2)	0.79374 (16)	1.08012 (11)	0.0391 (3)
C2	1.0614 (2)	0.69432 (15)	1.12069 (10)	0.0360 (3)
C3	1.1025 (2)	0.67500 (18)	1.23582 (11)	0.0452 (3)
Н3	1.2296	0.6095	1.2623	0.054*
C4	0.9552 (3)	0.7527 (2)	1.31168 (12)	0.0532 (4)
H4	0.9828	0.7387	1.3891	0.064*
C5	0.7681 (3)	0.8508 (2)	1.27337 (13)	0.0568 (4)
Н5	0.6687	0.9030	1.3245	0.068*
C6	0.7296 (3)	0.87091 (19)	1.15865 (13)	0.0511 (4)
Н6	0.6036	0.9381	1.1330	0.061*
C7	0.8315 (2)	0.82149 (17)	0.95536 (11)	0.0431 (3)
H7A	0.7802	0.9367	0.9433	0.052*
H7B	0.9806	0.8057	0.9170	0.052*
C8	0.5870 (2)	0.72473 (15)	0.78965 (11)	0.0382 (3)
C9	0.7269 (3)	0.81622 (19)	0.71694 (12)	0.0484 (4)
Н9	0.8623	0.8735	0.7451	0.058*
C10	0.6651 (3)	0.8221 (2)	0.60285 (13)	0.0601 (4)
H10	0.7602	0.8832	0.5547	0.072*
C11	0.4659 (3)	0.7395 (2)	0.55931 (13)	0.0643 (5)
H11	0.4264	0.7436	0.4822	0.077*
C12	0.3253 (3)	0.6506 (2)	0.63132 (14)	0.0633 (5)
H12	0.1889	0.5952	0.6026	0.076*
C13	0.3841 (3)	0.64261 (19)	0.74551 (12)	0.0506 (4)
H13	0.2874	0.5819	0.7932	0.061*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0351 (6)	0.0424 (6)	0.0382 (6)	0.0004 (5)	0.0039 (5)	0.0043 (5)
O1	0.0447 (6)	0.0436 (5)	0.0445 (5)	0.0068 (4)	0.0089 (4)	0.0043 (4)
C1	0.0363 (7)	0.0364 (7)	0.0443 (7)	-0.0025 (5)	-0.0008 (5)	0.0009 (5)
C2	0.0342 (7)	0.0333 (6)	0.0407 (7)	-0.0037 (5)	0.0034 (5)	-0.0006 (5)
C3	0.0437 (8)	0.0477 (8)	0.0439 (8)	0.0024 (6)	-0.0041 (6)	0.0022 (6)
C4	0.0596 (10)	0.0618 (9)	0.0381 (7)	-0.0005 (7)	0.0012 (7)	-0.0063 (7)
C5	0.0555 (9)	0.0622 (10)	0.0533 (9)	0.0066 (8)	0.0117 (7)	-0.0125 (7)
C6	0.0433 (8)	0.0513 (8)	0.0587 (9)	0.0104 (6)	0.0009 (7)	-0.0016(7)
C7	0.0405 (7)	0.0415 (7)	0.0471 (8)	-0.0010 (6)	-0.0021 (6)	0.0077 (6)
C8	0.0388 (7)	0.0374 (7)	0.0385 (7)	0.0086 (5)	0.0032 (5)	0.0019 (5)
C9	0.0445 (8)	0.0562 (9)	0.0446 (8)	-0.0005 (6)	0.0033 (6)	0.0058 (6)
C10	0.0632 (10)	0.0731 (11)	0.0450 (9)	0.0025 (8)	0.0103 (7)	0.0109 (7)

supplementary materials

C11	0.0764 (12)	0.0783 (11)	0.0378 (8)	0.0056 (9)	-0.0038 (8)	0.0015 (7)	
C12	0.0626 (10)	0.0726 (11)	0.0537 (9)	-0.0068 (8)	-0.0116 (8)	-0.0040 (8)	
C13	0.0490 (9)	0.0543 (9)	0.0483 (8)	-0.0050 (7)	0.0000 (6)	0.0024 (6)	
Geometric param	neters (Å, °)						
N1—C8		1.4168 (17)	С6—	-H6	0.93	300	
N1—C7		1.4663 (17)	С7—	-H7A	0.97	700	
N1—H1A		0.861 (16)	С7—	-H7B	0.97	700	
O1—C2		1.3722 (15)	C8—	-C13	1.3878 (19)		
O1—H1		0.8200	C8—	-C9	1.38	890 (19)	
C1—C6		1.3874 (19)	С9—	-C10	1.38	30 (2)	
C1—C2		1.3923 (19)	С9—	-H9	0.93	300	
C1—C7		1.5019 (18)	C10-	C11	1.37	70 (2)	
C2—C3		1.3806 (19)	C10-	-H10	0.93	300	
C3—C4		1.380 (2)	C11-	C12	1.37	76 (2)	
С3—Н3		0.9300	C11-	-H11	0.93	300	
C4—C5		1.374 (2)	C12-	C13	1.37	79 (2)	
C4—H4		0.9300	C12-	—H12	0.93	300	
C5—C6		1.375 (2)	C13-	—H13	0.93	300	
С5—Н5		0.9300					
C8—N1—C7		117.13 (11)	N1—	-С7—Н7А	109.2		
C8—N1—H1A		111.0 (9)	C1—	-С7—Н7А	109	109.2	
C7—N1—H1A		111.9 (10)	N1—	-С7—Н7В	109.2		
C2—O1—H1		109.5	C1-	-С7—Н7В	109.2		
C6—C1—C2		117.99 (12)	H7A	—С7—Н7В	107	.9	
C6—C1—C7		120.76 (12)	C13-	C8C9	118.75 (13)		
C2—C1—C7		121.23 (12)	C13-		118	.78 (12)	
O1—C2—C3		121.68 (12)	С9—	-C8—N1	122	.39 (12)	
O1—C2—C1		117.82 (11)	C10-	C9C8	120.00 (14)		
C3—C2—C1		120.47 (12)	C10-	—С9—Н9	120.0		
C4—C3—C2		120.10 (13)	C8—	-С9—Н9	120	.0	
С4—С3—Н3		119.9	C11-	C10C9	121	.12 (15)	
С2—С3—Н3		119.9	C11-		119	.4	
C5—C4—C3		120.34 (14)	С9—	-C10—H10	119	.4	
С5—С4—Н4		119.8	C10-		119	.03 (15)	
C3—C4—H4		119.8	C10-		120	.5	
C4—C5—C6		119.28 (14)	C12-		120	.5	
C4—C5—H5		120.4	C11-		120	.81 (15)	
C6—C5—H5		120.4	C11-	C11—C12—H12 11		.6	
C5—C6—C1		121.82 (14)	C13-		119	.6	
С5—С6—Н6		119.1	119.1 C12—C13—C8		120	.29 (14)	
С1—С6—Н6		119.1 C12—C13—H13 11		119	.9		
N1—C7—C1		111.91 (11)	С8—С13—Н13		119	.9	
C6—C1—C2—O	1	-178.32 (11)	С6—	-C1C7N1	-85	.36 (15)	
C7—C1—C2—O	1	-0.22 (18)	C2—	-C1C7N1	96.5	59 (15)	
C6—C1—C2—C	3	-0.41 (19)	С7—	-N1—C8—C13	-16	6.89 (12)	
C7—C1—C2—C	3	177.69 (12)	С7—	-N1—C8—C9	29 16.20 (18)		
O1—C2—C3—C	4	178.62 (12)	C13—C8—C9—C10		-1.0 (2)		

supplementary materials

C1—C2—C3—C4	0.8 (2)		N1—	C8—C9—C10		175.9	5 (13)
C2—C3—C4—C5	-0.5 (2)		C8-C9-C10-C11			0.3 (2)	
C3—C4—C5—C6	-0.1 (2)		С9—(C9-C10-C11-C12		0.5 (3)	
C4—C5—C6—C1	0.5 (2)		C10-	C10-C11-C12-C13		-0.7 (3)	
C2—C1—C6—C5	-0.2 (2)		C11-	-C12—C13—C8		0.0 (3)	
C7—C1—C6—C5	-178.35 (13)		C9—C8—C13—C12			0.8 (2)	
C8—N1—C7—C1	177.20 (11)	7.20 (11)		N1-C8-C13-C12		-176.2	24 (13)
Hydrogen-bond geometry (Å, °)							
D—H···A		<i>D</i> —Н		H···A	$D \cdots A$		D—H··· A
O1—H1…N1 ⁱ		0.82		1.98	2.7871 (16)		170
N1—H1A···O1 ⁱⁱ		0.864 (16)		2.233 (16)	3.0770 (17)		165.8 (13)

Symmetry codes: (i) -x+2, -y+1, -z+2; (ii) x-1, y, z.

Fig. 1

